Eikonal Blog

2010.07.22

Volume of the ball

Filed under: geometry — Tags: , — sandokan65 @ 13:12
  • The “volume” \Omega_n :\equiv \hbox{Vol}(B^n) of the ball B^n :\equiv \{x \in {\Bbb R}^n | s/t |x|<1\} is given by \Omega_n = \frac{\pi^{n/2}}{\Gamma(1+\frac{n}2)}.
  • The “surface area” \omega_n :\equiv \hbox{Area}({\Bbb S}^{n-1}) of the sphere {\Bbb S}^{n-1} :\equiv \{x \in {\Bbb R}^n | s/t |x|=1\} = \partial B^n is given by \omega_n = (n+1) \Omega_{n+1}.

Note: \Omega_{n+2} = \frac{\pi}{n+1}\Omega_n, so: \Omega_{2n} = \frac{\pi^n}{(2n-1)!!} and \Omega_{2n+1} = \frac{8 \pi^n}{3(2n)!!}.

Examples:
\begin{array}{ | c | c | c | c | c | c | c | c |} \hline n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\  \hline \Omega_n &  \pi & \frac{4\pi}{3} & \frac{\pi^2}2 & \frac{\pi^2}3 & \frac{\pi^3}{10} & \frac{\pi^3}{18} & \frac{\pi^4}{70} \\ \hline \omega_{n-1} & 2\pi & 4\pi & 2\pi^2 & \frac{5\pi^2}{3} & \frac{3\pi^3}5 & \frac{7\pi^3}{18} & \frac{4\pi^4}{35} \\   \hline \end{array}

Alzer’s inequalities (as cited in [1]):

  • a \Omega_{n+1}^{\frac{n}{n+1}} \le \Omega_n \le b \Omega_{n+1}^{\frac{n}{n+1}}, where a=\frac{2}{\sqrt{2}} = 1.128,37\cdots, b=\sqrt{e}=1.648,72\cdots;
  • \sqrt{\frac{n+A}{2\pi}} \le \frac{\Omega_{n-1}}{\Omega_n} \le \sqrt{\frac{n+B}{2\pi}}, where A=\frac12 and B=\frac\pi2-1=0.570,79\cdots;
  • \left(1+\frac1{n}\right)^\alpha \le \frac{\Omega_n^2}{\Omega_{n-1}\Omega_{n+1}} \le \left(1+\frac1{n}\right)^\beta, where \alpha=2-\frac{\ln(\pi)}{\ln(2)} = 0.348,50\cdots and \beta=\frac12.

Sources:

  1. [1] “Topics in Special Functions” by G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen – http://arxiv.org/abs/0712.3856

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: