Eikonal Blog

2010.07.22

Library of metrics

Filed under: General relativity, geometry — Tags: , , — sandokan65 @ 09:42

ADM decomposition

In D=1+3 dimensions the ADM (Arnowitt-Deser-Misner) split of the metric is given by (i,j\in\overline{1,3}, \mu,\nu\in\overline{0,3}):

ds^2  = -N^2 dt^2 + g_{ij}^{(3)}(dx^i+N^i dt)(dx^j+N^j dt)
where N is the lapse variable, N^i is the shift 3-vector.

Here:

  • R = K_{ij}K^{ij} - K^2 + R^{(3)} + 2\nabla_\mu (n^\mu \nabla_\nu n^\nu - n^\nu \nabla_\nu n^\mu) is the Ricci scalar,
  • K_{ij} :\equiv \frac1{2N} (\dot{g}_{ij}^{(3)} - \nabla_i^{(3)} N_j - \nabla_j^{(3)} N_i) is the extrinsic curvature, K :\equiv g^{ij}K_{ij}.

Source: “Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity” by E. Elizalde, S. Nojiri, S. D. Odintsov, D. Saez-Gomez; arXiv.org > hep-th > arXiv:1006.3387 (http://arxiv4.library.cornell.edu/abs/1006.3387).

More:

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: