Eikonal Blog

2010.07.13

Time inversion

Filed under: qft — Tags: , , — sandokan65 @ 14:02

Time inversion

  • {\cal T} = {\cal U}{\cal K}
  • \hat{x}:\equiv (-x^0,\vec{x}) = -\bar{x}
  • {\cal T}H{\cal T}^{-1} = H
  • {\cal T}{\cal L}(x){\cal T}^{-1} = {\cal L}(\hat{x})
  • {\cal T}j_\mu(x){\cal T}^{-1} = j^\mu(\hat{x})

Scalar field – real

  • {\cal T}\phi(x){\cal T}^{-1} = \epsilon\phi(\hat{x})
  • {\cal T}a(\vec{k}){\cal T}^{-1} = \epsilon a(-\vec{k})
  • {\cal T}a^\dagger(\vec{k}){\cal T}^{-1} = \epsilon a^\dagger(-\vec{k})
  • {\cal U}a(\vec{k}){\cal U}^{-1} = \epsilon a^\dagger(-\vec{k})
  • {\cal U}a^\dagger(\vec{k}){\cal U}^{-1} = \epsilon a(-\vec{k})

where \epsilon=\pm 1.

So:
{\cal U} = e^{-\frac{i\pi}2 \int d^3\vec{k} (a^\dagger(\vec{k})a(\vec{k}) - \epsilon a^\dagger(\vec{k})a(-\vec{k}))}.

Scalar field – complex

{\cal T}\phi(x){\cal T}^{-1} = \epsilon\phi^{*}(\hat{x})

Dirac field

Here:

  • {\cal T}\psi(x){\cal T}^{-1} = T \psi(\hat{x})
  • {\cal T}\bar{\psi}(x){\cal T}^{-1} = \bar{\psi}(\hat{x}) \gamma^0 T^\dagger \gamma^0,

where

  • T :\equiv i\gamma^1 \gamma^3 = T^\dagger = T^{-1} = - T^{*},
  • T \gamma_\mu T^{-1} = \gamma_\mu^T = \gamma^{\mu \ *}.

Then

  • T u(p,s) = u^*(-p,-s)e^{i\alpha_+(p,s)},
  • T v(p,s) = v^*(-p,-s)e^{i\alpha_-(p,s)},

\ni where \alpha_\pm(p,s) = \pi + \alpha_\pm(-p,-s).

Now

  • {\cal U} b(p,s) {\cal U}^{-1} = -b(-p,-s) e^{i\alpha_+(p,s)},
  • {\cal U} d^\dagger(p,s) {\cal U}^{-1} = -d^\dagger(-p,-s) e^{i\alpha_-(p,s)}.

Split {\cal U} =  {\cal U}_1{\cal U}_2 s/t

  • {\cal U}_1 b(p,s) {\cal U}_1^{-1} = e^{i\alpha_+(p,s)} b(p,s),
  • {\cal U}_1 d^\dagger(p,s) {\cal U}_1^{-1} = e^{i\alpha_-(p,s)} d^\dagger(p,s),
  • {\cal U}_2 b(p,s) {\cal U}_2^{-1} = -b(-p,-s),
  • {\cal U}_2 d^\dagger(p,s) {\cal U}_2^{-1} = -d^\dagger(-p,-s).

Their realizations are:

  • {\cal U}_1 = e^{- i \int d^3\vec{p} \sum_s (\alpha_+(p,s) b^\dagger(p,s)b(p,s) -   \alpha_(p,s)d^\dagger(p,s)d(p,s))},
  • {\cal U}_2 = e^{- i \frac{\pi}2 \int d^3\vec{p} \sum_s (b^\dagger(p,s)b(p,s) + b^\dagger(p,s)b(-p,-s)  - d^\dagger(p,s)d(p,s) - d^\dagger(p,s)d(-p,-s))}.

Electromagnetic field

  • {\cal T}A^\mu(x){\cal T}^{-1} = A_\mu(\hat{x}),
  • {\cal U}\vec{a}^a(\vec{k}){\cal U}^{-1} = - (-)^a a^a(-\vec{k}),
  • {\cal U} = e^{\frac{i\pi}2 \int d^3k (a^\dagger(\vec{k})^a a(\vec{k})_a + (-)^a a^\dagger(\vec{k})^a a(-\vec{k})_a}.
Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: