Eikonal Blog

2010.03.29

Default ports

Filed under: infosec — Tags: — sandokan65 @ 15:14
  • Default Ports – http://cirt.net/ports – The default port database contains Array entries for TCP and UDP port identifications.

Default passwords, wordlist and Rainbow tables

Filed under: infosec — Tags: , , , , — sandokan65 @ 15:07

Default password lists:

Word lists and dictionaries:

Rainbow tables


Related here: John the Ripper – https://eikonal.wordpress.com/2010/05/25/john-the-ripper/

2010.03.28

Physics books online

Filed under: books, physics — Tags: , , , , — sandokan65 @ 15:03

Related at this blog: Physics sites – https://eikonal.wordpress.com/2010/02/12/physics-sites/ | Books online – https://eikonal.wordpress.com/2010/01/04/books-online/ | Mathematics sites (go to Books section)- https://eikonal.wordpress.com/2010/03/17/mathematics-sites/ | Expand your mind – https://eikonal.wordpress.com/2010/01/04/expand-your-mind/

2010.03.23

Gathering information on a Unix system

Filed under: VA (Vulnerability Assessment) — Tags: , , , , , — sandokan65 @ 14:42
Test Linux AIX HP-UX
Hardware
ioscan -v
Kernel parameter information
kmtune -l
Network Configuration parameters
ndd -h supported
Network and routing tables.
netstat -in
netstat -rn
General machine information
uname -a
Raid Configuration
/sbin/irdiag -v
System Resources
sar -b <interval> <count>

Similar:

Tools


Sources:

kmtune.pl

Filed under: unix, VA (Vulnerability Assessment) — Tags: , — sandokan65 @ 14:30

kmtune.pl – a Perl script wrapping kmtune: http://forums2.itrc.hp.com/service/forums/getattachment.do?attachmentId=4902&ext=.txt. Author: H.Merijn Brand. (Source: http://forums13.itrc.hp.com/service/forums/questionanswer.do?admit=109447627+1269354030577+28353475&threadId=939626).

Local copy:

#!/pro/bin/perl -w

use strict;
use integer;

if (@ARGV) {
    local $" = '/i || m/';
    eval "sub pat { local \$_ = shift; m/@ARGV/i }";
    }
else {
    eval "sub pat { 1 }"
    }

my (%tune, %parm, $PARM, $parm, %ref);

open my $list, "kmtune -l |";
while () {
    s/\s+$//;
    my ($p, $v) = split m/:\s+/, $_, 2 or next;
    $v =~ s/\b0X([\dA-Fa-f]+)\b/0x\L$1/g;
    $p eq "Parameter" and $parm = $v, next;

    $tune{$parm}{$p} = $v;

    $p eq "Value" or next;
    if ($v =~ m/^-?(0x[\da-f]+|\d+)$/) {
	$parm{uc $parm} = 0 + $v =~ m/^-?0x/ ? hex $v : $v;
	}
    else {
	#printf STDERR "%-20s: '%s'\n", $p, $v;
	$ref{$parm} = $v;
	}
    }
close $list;

while (keys %ref) {
    foreach my $p (keys %ref) {
	my $up = uc $p;
	my $v  = $tune{$p}{Value};
	#my @r = (m/\b([A-Za-z]\w*)\b/g);
	my $x = 0;
	eval q(
	    $v =~ s/\b([A-Za-z]\w*)\b/exists$parm{uc $1}?$parm{uc $1}:do{$x++,$1}/ge;
	    );
	$x and next;
	eval "\$v = $v";
	$parm{$up} = $v;
	delete $ref{$p};
	}
    }

$= = 64;
foreach $parm (sort keys %tune) {
    $tune{$parm}{Default} eq $tune{$parm}{Value} and $tune{$parm}{Default} = "";
    $PARM = uc $parm;
    pat ("$parm $parm{$PARM} $tune{$parm}{Value} $tune{$parm}{Default}\n") and
	write;
    }

format STDOUT_TOP =
Parameter            Value hex    Value dec   Function                    Default
-------------------- ------------ ----------- --------------------------- --------------------
.
format STDOUT =
@<<<<<<<<<<<<<<<<<<>>>>>>>>>> @>>>>>>>>>> ^<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<
$parm,sprintf("0x%010x",$parm{$PARM}),$parm{$PARM},$tune{$parm}{Value},$tune{$parm}{Default}
~~                                            ^<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<
					      $tune{$parm}{Value},        $tune{$parm}{Default}
.

2010.03.19

Energy Scales in Physics

Filed under: physics — Tags: , — sandokan65 @ 10:39

The Physics Department at Princeton University has a nice map of energy scales currently known to physics: https://www.princeton.edu/physics/research/high-energy-theory/gubser-group/introduction-to-the-physi/energy-scales-in-physics/.

2010.03.17

Mathematics sites

General

Matrices

Online symbolic calculators

Geometry

Topology

Differential Equations

Books online

Infosec blogs

—–
Similar collections (and partial sources) of links:

Infosec wikies

Filed under: infosec — Tags: — sandokan65 @ 09:51

Cryptography resources

Sites

Historic cyphers

Hash algorithms

  • Passphrase Hashes – http://www.users.zetnet.co.uk/hopwood/crypto/scan/ph.html

    • Authenticators: When a passphrase is verified, the first few characters of the authenticator [= “magic”] determine which mechanism is used:
      • If the first three characters are “$1$”, MD5-crypt is used.
      • If the first four characters are “$2a$”, bcrypt is used.
      • If the first character is not “$” or “_”, Traditional-crypt3 is used.
  • The HashClash website – http://www.win.tue.nl/hashclash/ – hash algorithms collisions

RSA

  • export-a-crypto-system sig – http://www.cypherspace.org/rsa/, http://www.cypherspace.org/rsa/rsa-details.html – a Perl 3-line implementation of RSA encryptor and decryptor.
      #!/bin/perl -sp0777i<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<j]dsj 
      $/=unpack('H*',$_);$_=`echo 16dio\U$k"SK$/SM$n\EsN0p[lN*1 
      lK[d2%Sa2/d0$^Ixp"|dc`;s/\W//g;$_=pack('H*',/((..)*)$/)
        

    A 2-line version:

      print pack"C*",split/\D+/,`echo "16iII*o\U@{$/=$z;[(pop,pop,unpack"H*", 
      )]}\EsMsKsN0[lN*1lK[d2%Sa2/d0<X+d*lMLa^*lN%0]dsXx++lMlN/dsM0<J]dsJxp"|dc`
        
    • Use:
      • Encryption: echo “squeamish ossifrage” | rsa -k=10001 -n=1967cb529 > msg.rsa
      • Decryption: % rsa -d -k=ac363601 -n=1967cb529 < msg.rsa
    • requires GNU dc (http://www.cypherspace.org/rsa/dc.html)
    • .

2010.03.16

Avalanches

Filed under: mathematics — Tags: — sandokan65 @ 14:46

Source: “Unusual calms tell of coming storms”; Kimberly Patch; TRN (Technology Research News); 2001.08.22
URL: http://www.nd.edu/~networks/linked/ (EXPIRED, now the article is at: http://www.trnmag.com/Stories/2001/082201/Unusual_calms_tell_of_coming_storms_082201.html).

  • The authors consider the complex (“large”) systems where population of numerous elements (“agents”) competes for a limited resource.
    System Agents Resource
    computer networks data packets network bandwidth
    commuter traffic cars road space
    stock market stock traders monetary gain
  • The macroscopic behavior of the system is predictable to certain degree. Typically the macroscopic behavior is characterized by one or more phenomenological quantities (“order parameters”) such as traffic speed or market prices.
  • Presence of internal flow: Although many big changes seem to happen randomly and almost without cause, large systems contain an internal flow. Example: The market produces its own dynamics in the absence of significant news, which is most of the time.
  • Presence of various agent strategies stabilizes the system.
    • Predictability also has to do with how stable a system is.
    • For commuter traffic: usually everyone drives differently, at slightly different speeds and with slightly different strategies — this gives the traffic flow some kind of stability. If everyone is driving at the same speed, in the same way, with the same distance between, then this is unstable. This is because if something happens to one car, it is more likely to cause a chain reaction. If something appears on the road, it will cause a massive disruption.
  • Stability: In stable regime the success of an individual strategy is random – i.e. any strategy is as good as a random one; i.e. any random strategy is a good one.
    • Usually a system rolls along with only reasonably small changes like the daily changes in the stock market or the traffic speed in the usual nightly commute home from the office… During these periods, changes are almost random… If you want to predict whether the stock will go up or down or whether one lane or another on the highway will be best, than you might as well flip a coin.
    • This is because the internal forces in the system are finely balanced. Example: there’s a large force created by traders who want to buy, but an almost equal and opposite force created by traders who want to sell, he said. “These changes are essentially random and hence unpredictable,” he said.
  • A Crowd Effect: The level of predictability goes up just before a large change. Strategy selection amongst agents seems to converge. Without communicating, or even knowing the existence of each other, agents begin to lock into a particular behavior just before a large change. The change is a consequence of the global state of the system, and not something simply triggered by an isolated, random event.
  • Phase transition: When the forces become unbalanced, an avalanche-like effect happens whereby small glimpses of a pattern momentarily emerge and, by chance, become amplified. It is during this amplification period that the predictability of the system grows. The agents start taking up definite positions — the two opposing forces are now momentarily out of balance. Quickly the imbalance begins to show itself as a definite trend in change of order parameter.

More:

  • “Predictability of large future changes in a competitive evolving population”; D. Lamper, S. Howison, N. F. Johnson; arXiv: cond-mat/0105258; 2001.05.14 – http://arxiv.org/abs/cond-mat/0105258.
    • Abstract: The dynamical evolution of many economic, sociological, biological and physical systems tends to be dominated by a relatively small number of unexpected, large changes (`extreme events’). We study the large, internal changes produced in a generic multi-agent population competing for a limited resource, and find that the level of predictability actually increases prior to a large change. These large changes hence arise as a predictable consequence of information encoded in the system’s global state.
  • “Application of multi-agent games to the prediction of financial time-series”; N. F. Johnson, D. Lamper, P. Jefferies, M. L. Hart, S. Howison; Work presented at the NATO Workshop on Econophysics. Prague (Feb 2001). To appear in Physica A. Also in arXiv: cond-mat/0105303; 2001.05.15 – http://arxiv.org/abs/cond-mat/0105303.
    • Abstract: We report on a technique based on multi-agent games which has potential use in the prediction of future movements of financial time-series. A third-party game is trained on a black-box time-series, and is then run into the future to extract next-step and multi-step predictions. In addition to the possibility of identifying profit opportunities, the technique may prove useful in the development of improved risk management strategies.
  • “Anatomy of extreme events in a complex adaptive system”; Paul Jefferies, David Lamper, Neil F. Johnson; arXiv: cond-mat/0201540; 2002.02.04 – http://arxiv.org/abs/cond-mat/0201540.
    • Abstract: We provide an analytic, microscopic analysis of extreme events in an adaptive population comprising competing agents (e.g. species, cells, traders, data-packets). Such large changes tend to dictate the long-term dynamical behaviour of many real-world systems in both the natural and social sciences. Our results reveal a taxonomy of extreme events, and provide a microscopic understanding as to their build-up and likely duration.
  • “Crash Avoidance in a Complex System”; Michael L. Hart, David Lamper, Neil F. Johnson; arXiv: cond-mat/0206228; 2002.06.13 – http://arxiv.org/abs/cond-mat/0206228.
    • Abstract: Complex systems can exhibit unexpected large changes, e.g. a crash in a financial market. We examine the large endogenous changes arising within a non-trivial generalization of the Minority Game: the Grand Canonical Minority Game (GCMG). Using a Markov Chain description, we study the many possible paths the system may take. This `many-worlds’ view not only allows us to predict the start and end of a crash in this system, but also to investigate how such a crash may be avoided. We find that the system can be `immunized’ against large changes: by inducing small changes today, much larger changes in the future can be prevented.
  • “An Investigation of Crash Avoidance in a Complex System”; Michael L. Hart, David Lamper, Neil F. Johnson; arXiv: cond-mat/0207588; 2002.07.24 – http://arxiv.org/abs/cond-mat/0207588.
    • Abstract: Complex systems can exhibit unexpected large changes, e.g. a crash in a financial market. We examine the large endogenous changes arising within a non-trivial generalization of the Minority Game: the Grand Canonical Minority Game (GCMG). Using a Markov Chain description, we study the many possible paths the system may take. This ‘many-worlds’ view not only allows us to predict the start and end of a crash in this system, but also to investigate how such a crash may be avoided. We find that the system can be ‘immunized’ against large changes: by inducing small changes today, much larger changes in the future can be prevented.

3x+1 problem

Filed under: mathematics — Tags: — sandokan65 @ 14:24

Community and environmental art

Filed under: art and fun — Tags: , , — sandokan65 @ 14:03

Rock art


More of the kind here: Interesting visual arts sites – https://eikonal.wordpress.com/2011/04/15/interesting-visual-arts-sites/

Online libraries

Archives at large:

Local libraries:

Archives of disappeared online content

2010.03.15

Why DRM doesn’t work

Filed under: it — Tags: , — sandokan65 @ 15:02

Bruce Schneier pointed that the Brad Colbow’s blog has a short comic on why DRM does not work: http://www.bradcolbow.com/archive.php/?p=205

InfoSec lists and newsgroups

Filed under: infosec — Tags: , — sandokan65 @ 13:57

2010.03.13

Toward a New Alexandria Library

Filed under: books — Tags: , — sandokan65 @ 19:55

The New Republic (tnr.com) has an article “Toward a New Alexandria” by Lisbet Rausing (2010.03.12) – http://www.tnr.com/print/article/books-and-arts/toward-new-alexandria.

2010.03.12

Fibonacci numbers – simple generalizations

Filed under: mathematics — Tags: , , , — sandokan65 @ 17:32

Source: 2009.02.04 Wed

The Fibonacci series \{f_n | n\in {\Bbb N}_0\} are defined by the recursive equation

    f_{n} = f_{n-1} + f_{n-2}

and the “initial conditions” (i.e. known) f_0 and f_1.

The case f_0=f_1=1 is the original Fibonacci’s sequence, and traditionally the members of the sequence are symbolized by capital case F: \{F_0=1, F_1=1, F_2=2, \cdots\}.

The exponential-type generating function {\cal F}(z) :\equiv \sum_{n=0}^\infty \frac{z^n}{n!} f_n satisfies the simple IVP (Initial value Problem):

  • {\cal F}''(z) = {\cal F}'(z) + {\cal F}(z),
  • {\cal F}(0) = f_0,
  • {\cal F}'(0) = f_1,

with the unique solution

    {\cal F}(z) = \frac{f_0}{\sqrt{5}} [(\varphi-1) e^{+\varphi z} + \varphi e^{(1-\varphi) z} ]  + \frac{f_1}{\sqrt{5}} [e^{+\varphi z} - e^{(1-\varphi) z}].

Here $\varphi :\equiv \frac{\sqrt{5}+1}2$ is the Golden Section, a root of the characteristic polynomial $P(\lambda) = \lambda^2 – \lambda-1$ (the other solution being $1-\varphi = \frac{\sqrt{5}-1}2$).

Having the explicit expression for the generating function, one gets the explicit expression for individual sequence members:

    f_n =  \varphi^n \frac{(1-\varphi) f_0 + f_1}{\sqrt{5}} +   (1-\varphi)^n \frac{\varphi f_0 - f_1}{\sqrt{5}}.

First slight generalization

Use the recursive equation f_{n+2} = m f_{n+1} + k f_n. It leads to the following ODE for the generating function {\cal F}''(z) = m {\cal F}'(z) + k {\cal F}(z), the characteristic root equation \lambda^2 = m \lambda + k with the solutions \lambda_\pm = \frac{m\pm \kappa}2 (where \kappa :\equiv \sqrt{m^2+4 k}). The solution for the generating function is

    {\cal F}(z) = f_0 \left[\frac{1-m}2 e^{\lambda_+ z} - \frac{1+m}2 e^{\lambda_- z}\right] + f_1 \left[e^{\lambda_+ z} -  e^{\lambda_- z}\right]

and the explicit expression for the sequence members is

    f_n = f_0 \left[\frac{1-m}2 (\lambda_+)^n - \frac{1+m}2 (\lambda_-)^n\right] + f_1 \left[(\lambda_+)^n -  (\lambda_-)^n\right].

Second slight generalization

Use the recursive equation f_{n+3} = f_{n+3} + f_{n+1} + f_n. Here:

2010.03.11

Mathematics links

Filed under: mathematics — Tags: , , , , , , , , , , — sandokan65 @ 14:02

Blogs

Tools

Primary tool is, off course, your brain

Numerical calculations

Analytic/Symbolic calculations

Information:

Graphics/Plotting

2010.03.09

Transcendental numbers: Euler’s constant (= Euler-Mascheroni constant) gamma

Filed under: mathematics — Tags: , , — sandokan65 @ 14:25

Source: http://www.wolframalpha.com/

Euler’s constant (= Euler-Mascheroni constant):
\gamma = 0.577, 215, 664, 901, 532, 860, 606, 512, 090, 082, 402, 431, 042, 159, 335, 939, 923, 598, 805, 767, 234, 884, 867, 726, 777, 664, 670, 936, 947, 063, 291, 746, 749, 514, 631, 447, 249, 807, 082, 480, 960, 504, 014, 486, 542, 836, 224, 173, 997, 644, 923, 536, 253, 500, 333, 742, 937, 337, 737, 673, 942, 792, 595, 258, 247, 094, 916, 008, 735, 203, 948, 165, 670, 853, 233, 151, 776, 611, 528, 621, 199, 501, 507, 984, 793, 745, 085, 705, 740, 029, 921, 354, 786, 146, 694, 029, 604, 325, 421, 519, 058, 775, 535, 267, 331, 399, 254, 012, 967, 420, 513, 754, 139, 549, 111, 685, 102, 807, 984, 234, 877, 587, 205, 038, 431, 093, 997, 361, 372, 553, 060, 889, 331, 267, 600, 172, 479, 537, 836, 759, 271, 351, 577, 226, 102, 734, 929, 139, 407, 984, 301, 034, 177, 717, 780, 881, 549, 570, 661, 075, 010, 161, 916, 633, 401, 522, 789, 358, 679, 654, 972, 520, 362, 128, 792, 265, 559, 536, 696, 281, 763, 887, 927, 268, 013, 243, 101, 047, 650, 596, 370, 394, 739, 495, 763, 890, 657, 296, 792, 960, 100, 901, 512, 519, 595, 092, 224, 350, 140, 934, 987, 122, 824, 794, 974, 719, 564, 697, 631, 850, 667, 612, 906, 381, 105, 182, 419, 744, 486, 783, 638, 086, 174, 945, 516, 989, 279, 230, 187, 739, 107, 294, 578, 155, 431, 600, 500, 218, 284, 409, 605, 377, 243, 420, 328, 547, 836, 701, 517, 739, 439, 870, 030, 237, 033, 951, 832, 869, 000, 155, 819, 398, 804, 270, 741, 154, 222, 781, 971, 652, 301, 107, 356, 583, 396, 734, 871, 765, 049, 194, 181, 230, 004, 065, 469, 314, 299, 929, 777, 956, 930, 310, 050, 308, 630, 341, 856, 980, 323, 108, 369, 164, 002, 589, 297, 089, 098, 548, 682, 577, 736, 428, 825, 395, 492, 587, 362, 959, 613, 329, 857, 473, 930, 237, 343, 884, 707, 037, 028, 441, 292, 016, 641, 785, 024, 873, 337, 908, 056, 275, 499, 843, 459, 076, 164, 316, 710, 314, 671, 072, 237, 002, 181, 074, 504, 441, 866, 475, 913, 480, 366, 902, 553, 245, 862, 544, 222, 534, 518, 138, 791, 243, 457, 350, 136, 129, 778, 227, 828, 814, 894, 590, 986, 384, 600, 629, 316, 947, 188, 714, 958, 752, 549, 236, 649, 352, 047, 324, 364, 109, 726, 827, 616, 087, 759, 508, 809, 512, 620, 840, 454, 447, 799, 229, 915, 724, 829, 251, 625, 127, 842, 765, 965, 708, 321, 461, 029, 821, 461, 795, 195, 795, 909, 592, 270, 420, 898, 962, 797, 125, 536, 321, 794, 887, 376, 421, 066, 060, 706, 598, 256, 199, 010, 288, 075, 612, 519, 913, 751, 167, 821, 764, 361, 905, 705, 844, 078, 357, 350, 158, 005, 607, 745, 793, 421, 314, 498, 850, 078, 641, 517, 161, 519, 456, 570, 617, 043, 245, 075, 008, 168, 705, 230, 789, 093, 704, 614, 306, 684, 817, 916, 496, 842, 549, 150, 496, 724, 312, 183, 783, 875, 356, 489, 495, 086, 845, 410, 234, 060, 162, 250, 851, 558, 386, 723, 494, 418, 788, 044, 094, 077, 010, 688, 379, 511, 130, 787, 202, 342, 639, 522, 692, 097, 160, 885, 690, 838, 251, 137, 871, 283, 682, 049, 117, 892, 594, 478, 486, 199, 118, 529, 391, 029, 309, 905, 925, 526, 691, 727, 446, 892, 044, 386, 971, 114, 717, 457, 157, 457, 320, 393, 520, 912, 231, 608, 508, 682, 755, 889, 010, 945, 168, 118, 101, 687, 497, 547, 096, 936, 667, 121, 020, 630, 482, 716, 589, 504, 932, 731, 486, 087, 494, 020, 700, 674, 259, 091, 824, 875, 962, 137, 384, 231, 144, 265, 313, 502, 923, 031, 751, 722, 572, 216, 283, 248, 838, 112, 458, 957, 438, 623, 987, 037, 576, 628, 551, 303, 314, 392, 999, 540, 185, 313, 414, 158, 621, 278, 864, 807, 611, 003, 015, 211, 965, 780, 068, 117, 773, 763, 501, 681, 838, 973, 389, 663, 986, 895, 793, 299, 145, 638, 864, 431, 037, 060, 807, 817, 448, 995, 795, 832, 457, 941, 896, 202, 604, 984, 104, 392, 250, 786, 046, 036, 252, 772, 602, 291, 968, 299, 586, 098, 833, 901, 378, 717, 142, 269, 178, 838, 195, 298, 445, 607, 916, 051, 972, 797, 360, 475, 910, 251, 099, 577, 913, 351, 579, 177, 225, 150, 254, 929, 324, 632, 502, 874, 767, 794, 842, 158, 405, 075, 992, 904, 018, 557, 645, 990, 186, 269, 267, 764, 372, 660, 571, 176, 813, 365, 590, 881, 554, 810, 747, 000, 062, 336, 372, 528, 894, 955, 463, 697, 143, 301, 200, 791, 308, 555, 263, 959, 549, 782, 302, 314, 403, 914, 974, 049, 474, 682, 594, 732, 084, 618, 524, 605, 877, 669, 488, 287, 953, 010, 406, 349, 172, 292, 185, 800, 870, 677, 069, 042, 792, 674, 328, 444, 696, 851, 497, 182, 567, 809, 584, 165, 449, 185, 145, 753, 319, 640, 633, 119, 937, 382, 157, 345, 087, 498, 832, 556, 088, 887, 352, 801, 901, 915, 508, 968, 855, 468, 259, 245, 444, 527, 728, 173, 057, 301, 080, 606, 177, 011, 363, 773, 182, 462, 924, 660, 081, 277, 162, 101, 867, 744, 684, 959, 514, 281, 790, 145, 111, 948, 934, 228, 834, 482, 530, 753, 118, 701, 860, 976, 122, 462, 317, 674, 977, 556, 412, 461, 983, 856, 401, 484, 123, 587, 177, 249, 554, 224, 820, 161, 517, 657, 994, 080, 629, 683, 424, 289, 057, 259, 473, 926, 963, 863, 383, 874, 380, 547, 131, 967, 642, 926, 837, 249, 076, 087, 507, 378, 528, 370, 230, 468, 650, 349, 051, 203, 422, 721, 743, 668, 979, 284, 862, 972, 908, 892, 678, 977, 703, 262, 462, 391, 226, 188, 876, 530, 057, 786, 274, 360, 609, 444, 360, 392, 809, 770, 813, 383, 693, 423, 550, 858, 394, 112, 670, 921, 873, 441, 451, 218, 780, 327, 615, 050, 947, 805, 546, 630, 058, 684, 556, 315, 245, 460, 531, 511, 325, 281, 889, 107, 923, 149, 131, 103, 234, 430, 245, 093, 345, 000, 307, 655, 864, 874, 222, 971, 770, 033, 178, 453, 915, 056, 694, 015, 998, 849, 291, 609, 114, 002, 948, 690, 208, 848, 538, 169, 700, 955, 156, 634, 705, 544, 522, 176, 403, 586, 293, 982, 865, 813, 123, 870, 132, 535, 880, 062, 568, 662, 692, 699, 776, 773, 773, 068, 322, 690, 091, 608, 510, 451, 500, 226, 107, 180, 255, 465, 928, 493, 894, 927, 759, 589, 754, 076, 155, 993, 378, 264, 824, 197, 950, 641, 868, 143, 788, 171, 850, 885, 408, 036, 799, 631, 423, 954, 009, 196, 438, 875, 007, 890, 000, 062, 799, 794, 280, 988, 637, 299, 259, 197, 776, 504, 040, 992, 203, 794, 042, 761, 681, 783, 715, 668, 653, 066, 939, 830, 916, 524, 322, 705, 955, 304, 176, 673, 664, 011, 679, 295, 901, 293, 053, 744, 971, 830, 800, 427, 584, 863, 508, 380, 804, 246, 673, 509, 355, 983, 232, 411, 696, 921, 486, 064, 989, 276, 362, 443, 295, 885, 487, 378, 970, 148, 971, 334, 353, 844, 800, 289, 046, 665, 090, 284, 537, 689, 622, 398, 304, 881, 406, 273, 054, 087, 959, 118, 967, 05...


For definition and some properties see the separate posting https://eikonal.wordpress.com/2010/01/04/euler-mascheroni-constant/.

Older Posts »

Create a free website or blog at WordPress.com.