Eikonal Blog


Integral transforms

Filed under: mathematics — Tags: — sandokan65 @ 20:29

General linear integral transformation:

    F(p) = {\bf T}[f](p) :\equiv \int_a^b K(p,t) f(t) dt

Here we assume that this integral exist, K is a fixed complex function, p \in {\Bbb C} and a,b\in{\Bbb R}.

Specific examples:

  • Laplace transformation: {\bf L} defined by a=0, b=+\infty, K(p,t)=e^{pt}.
  • Fourier transformation: {\bf F} defined by a=-\infty, b=+\infty, K(p,t)=\frac1{\sqrt{2\pi}}e^{ipt}.
  • Mellin transformation: {\bf M} defined by a=0, b=+\infty, K(p,t)=t^{p-1}.
  • Hankel transformation: {\bf H} defined by a=0, b=+\infty, K(p,t)=t \ J_n(pt) (a Bessel function of order n).

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at WordPress.com.

%d bloggers like this: